Investigations on the Hyperfine and Superhyperfine Interaction Parameters for Cs₂GeF₆:Mn⁴⁺

Shao-Yi Wu^{a,b}, Xiu-Ying Gao^a, and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **60a**, 611 – 614 (2005); received May 12, 2005

The hyperfine structure constant A and the superhyperfine interaction parameters A' and B' of Cs_2GeF_6 :Mn⁴⁺ are theoretically studied by the cluster approach. The orbital mixing coefficients and the unpaired spin densities in 2s, $2p_{\sigma}$ and $2p_{\pi}$ fluorine orbitals are obtained from the optical spectra and the impurity-ligand distance of the studied system. Based on a uniform scheme, the parameters A, A' and B' (as well as the g factor) are reasonably explained. The results are discussed, and the unpaired spin densities of the 2s, $2p_{\sigma}$ and $2p_{\pi}$ orbitals of the ligand F^- are compared with those in previous works.

Key words: Electron Paramagnetic Resonance (EPR); Crystal- and Ligand-field Theory; Hyperfine Interactions; Mn⁴⁺; Cs₂GeF₆.